Bio Based Pathways Archives - BioBiz

Category : Bio Based Pathways


Furandicarboxylic Acid (FDCA)

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" custom_margin="-56px|auto||auto||" custom_padding="0px|||||" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"]FDCA is a bio-based platform chemical that serves as a renewable alternative to terephthalic acid (TPA), the key monomer in polyethylene terephthalate (PET) production. When polymerized with ethylene glycol,...


Vanillin Production from Lignin via Enzymatic or Chemical Conversion

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-97px|||||" global_colors_info="{}"]Vanillin, the primary component of vanilla flavor, is widely used in food, beverages, fragrances, and pharmaceuticals. Traditionally sourced from vanilla beans or synthesized from petrochemicals (like guaiacol), vanillin can also...


Polyethylene Furanoate (PEF) Production from FDCA and Ethylene Glycol

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-95px|||||" global_colors_info="{}"]Polyethylene furanoate (PEF) is a 100% bio-based polyester made from 2,5-furandicarboxylic acid (FDCA) and ethylene glycol (EG). Often dubbed the “bio-PET alternative,” PEF offers superior gas barrier properties, higher mechanical...


Renewable Hydroxymethylfurfural (HMF)

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-95px|||||" global_colors_info="{}"]Hydroxymethylfurfural (HMF) is a versatile bio-based platform chemical derived from sugars, acting as a critical intermediate for the production of 2,5-furandicarboxylic acid (FDCA), biofuels, solvents, resins, and biodegradable plastics. Often...


Bio-based Triethyl Citrate (TEC)

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-94px|||||" global_colors_info="{}"]Triethyl citrate (TEC) is a biodegradable, non-toxic plasticizer and solvent used in pharmaceutical coatings, cosmetics, food additives (E number E1505), and bioplastics. Conventionally produced from fossil-based ethanol and citric acid,...


How Bio-sourced Methanol is Produced

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-95px|||||" global_colors_info="{}"]Bio-methanol production typically uses biogenic carbon sources to generate synthesis gas (syngas), which is catalytically converted into methanol. Key Pathways: Gasification of Biomass: Agricultural residues, wood waste, or municipal solid...


Lipid Accumulation Pathways in Algae

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-100px|||||" global_colors_info="{}"]Algae, the microscopic engines of photosynthesis, are emerging as powerful platforms for producing lipids—key feedstocks for biofuels, nutraceuticals, and cosmetic oils. With superior biomass productivity, ability to grow on non-arable...


Direct Air Capture to Biofuels: Closing the Carbon Loop with Engineered Biology

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-94px|||||" global_colors_info="{}"]Introduction Direct Air Capture (DAC) is a technology that captures carbon dioxide (CO₂) directly from the atmosphere, addressing diffuse emissions that traditional capture systems can’t reach. When combined with biofuel...


Metabolic Engineering for Higher Alcohols

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-94px|||||" global_colors_info="{}"]Metabolic engineering involves the redesign of microorganisms by modifying their genes and enzyme systems to produce targeted compounds more efficiently. A key application of this field is the biosynthesis of...


Photosynthetic Efficiency in Cyanobacteria

[et_pb_section fb_built="1" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.24.1" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.24.1" _module_preset="default" custom_margin="-94px|||||" global_colors_info="{}"]Photosynthetic efficiency refers to how effectively an organism converts sunlight into chemical energy. In the context of cyanobacteria, it’s the ability to capture solar energy and fix atmospheric CO₂ into...